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Abstract
Next-generation sequencing data pose a severe curse of dimensionality, complicating tradi-

tional "single marker—single trait" analysis. We propose a two-stage combined p-value

method for pathway analysis. The first stage is at the gene level, where we integrate effects

within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at

the pathway level, where we perform a correlated Lancaster procedure to detect joint effects

from multiple genes within a pathway. We show that the Lancaster procedure is optimal in

Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,

lim
ε!0

Nð2Þ=Nð1Þ ¼ �12ðyÞ, compares sample sizes among different statistical tests when signals

become sparse in sequencing data, i.e. ε!0. The optimal Bahadur efficiency ensures that

the Lancaster procedure asymptotically requires a minimal sample size to detect sparse

signals (PNðiÞ < ε ! 0). The Lancaster procedure can also be applied to meta-analysis.

Extensive empirical assessments of exome sequencing data show that the proposed

method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive

Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Con-

sortium to identify pathways significantly associated with high-density lipoprotein choles-

terol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.

Introduction
Next-generation sequencing (NGS) technology has opened a new era for studying genetic asso-
ciations with complex diseases. Yet, although whole genome searching has become easier and
less costly to perform, our ability to critically evaluate such high throughput data has not
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improved substantially. Sequencing data often contain millions of genetic variants. However,
testing millions of markers using the "single marker—single trait" analysis often loses power
after the multiple-testing adjustment. Genome-wide significance requires strict Bonferroni cor-
rection with p-value< 2.5×10−6 for a total of 20,000 gene-based statistical tests. To maintain
statistical power of detecting rare variants, a theoretical sample size of n>10,000 may be
required for sequencing data [1].

These dimensional challenges motivate us to aggregate effects from multiple genes using
pathway analysis. Genetic pathways comprise molecular entities that interact with each other
to regulate specific cell functions, metabolic processes, biosynthesis, and embryonic develop-
ments. For non-Mendelian diseases and complex traits, multiple genetic risk factors may func-
tion together in the pathway. As a result, signals may not be significant in the "single marker-
single trait" analysis, but many such values from related genes might provide valuable informa-
tion regarding gene function and regulation. The pathway information can be extracted from
bioinformatic resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2],
the PANTHER classification system for protein sequence data [3], and Reactome database for
human pathway data [4].

We propose a two-stage combined p-value method for pathway (gene set) analysis of NGS
data. The first stage is at the gene level, where we integrate effects from rare and common vari-
ants within a gene. The goal of the first stage analysis is to generate a p-value that summarizes
an overall effect within a gene. The second stage is at the pathway level, where we aggregate p-
values among all genes in a pathway.

An exome sequencing simulation study was conducted to compare the SKAT-Lancaster
procedure and Gene Set Enrichment Analysis (GSEA) [5]. We applied the competitive Lancas-
ter procedure to meta-analysis data generated by the Global Lipids Genetics Consortium.

Methods

Two-Stage Pathway Analysis for Sequencing Data
There is a different nature of effects between gene and pathway. At the gene level, we are inter-
ested in identifying rare genetic variants from high throughput data. At the pathway level,
genes with similar functions work together to fulfill biological tasks. Thus, we are interested in
detecting small and common effects among genes. The proposed “SKAT-Lancaster” procedure
provides a two-stage framework in order to (1) reduce the dimension of genetic variants, (2)
combine effects from multiple genes, and (3) take genetic correlation architecture into account.

Stage I—Gene Level Testing. In the first stage, we suggest integrating effects from rare
variants within the ith gene using the Sequence Kernel Association Test (SKAT) [6]. Several
tests have been proposed to analyze rare variants at the gene level, including burden tests and
the C-alpha test. We choose SKAT because SKAT has been proven to be a locally most power-
ful score test [7].

Let Gij be the j
th variant of the ith gene. Let βi = (βi1, � � �, βij, � � �) be the effects from markers

in the ith gene. Generate a p-value, Pi for the i
th hypothesis testing H0i : bi ¼~0 vs. Hai : bi 6¼~0

in the ith gene. A! is added to denote the zero vector. SKAT is a locally most powerful score
test on the variance component of a regression model Y ¼ atX þ bt

iGi þ ε, where Y is a pheno-
type, α is a vector of fixed effects from covariates X, and ε is an error term. To increase the
power, SKAT tests H0i: βi = 0 by treating βij as a random variable with mean zero and variance
wijτi, where τi is a common variance component and wij is a pre-specified weight for variant

Gij. As a result,H0i : bi ¼~0 is equivalent to H0i: τi = 0. The variance component score statistic

is Q ¼ ðY � m̂ÞtGiWiG
t
iðY � m̂Þ, where m̂ ¼ âtX is the predicted mean of Y under H0i, and
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Wi = diag(wi1, � � �) are the weights of the variants. Under the null hypothesis, Q follows a mix-
ture of chi-square distributions [6].

Common variants, population stratification, and other covariates can also be included as
fixed effects in the model. The goal of the first stage analysis is to generate a p-value that sum-
marizes the overall effect for each gene.

Stage II—Pathway Level P-value Combination. The second stage is at the pathway level,
where we perform the modified Lancaster procedure to combine effects from multiple genes
within a pathway. We choose the Lancaster procedure because it is optimal in Bahadur effi-
ciency among all weighted combined p-value methods. The original Lancaster procedure is
based on the independent p-value assumption. However, genetic data are highly correlated and
ignoring the correlation structure will severely inflate the Type I error rate. Thus we need a
modification of the Lancaster procedure to take the complex correlation structure among
genetic variants into account [8].

Considerm sequences of test statistics, fT ðiÞ
ni
g; i ¼ 1; 2; � � � ; m and the corresponding sig-

nificance levels,fPðiÞ
ni
g, where ni is the sample size for the ith test statistic. Let the Lancaster sta-

tistic TLancaster
n ¼

Xm
i¼1

F�1
i ð1� PðiÞ

ni
Þ, where PðiÞ

ni
F�1
i is the inverse cumulative distribution

function (CDF) of w2wi
with wi > 0 for i = 1, 2,� � �,m. When p-values are correlated, TLancaster

n

does not follow w2Xm
i¼1

wi

. The null distribution of TLancaster
n does not have an explicit analytical

form. To address this issue, we approximate the TLancaster
n statistic with a scaled chi-square distri-

bution. Let TLancaster
n � cw2v where c> 0 is a scalar and v> 0 is the degrees of freedom for the

approximate chi-square distribution. Under H0: θ 2 Θ0, we have

EðTLancaster
n Þ ¼ E

Xm
i¼1

F�1
i ð1� PðiÞ

ni
Þ

 !
¼
Xm
i¼1

wi

and

varðTLancaster
n Þ ¼

Xm
i¼1

varðF�1
i ð1� PðiÞ

ni
ÞÞ þ 2

X
i<j

covðF�1
i ð1� PðiÞ

ni
Þ; F�1

j ð1� PðjÞ
nj
ÞÞ ¼ 2

Xn
i¼1

wi þ 2
X
i<j

rij;

where rij ¼ covðF�1
i ð1� PðiÞ

ni
Þ; F�1

j ð1� PðjÞ
nj
ÞÞ takes the correlation among p-values into

account. We use the Satterthwaite method to match the mean and variance of TLancaster
n and cw2v ,

and solve the equations to derive c and v. Thus we have TLancaster
n � cw2

v , where

c ¼ 0:5varðTLancaster
n Þ=EðTLancaster

n Þ and v ¼ 2½EðTLancaster
n Þ�2=varðTLancaster

n Þ.
As genetic variants have very complex correlation architecture, there is no analytical form

for the exact correlated Lancaster procedure. The Satterthwaite approximation is an effective
approach to summarize the distribution of the exact correlated Lancaster procedure. Q-Q
plots from simulated data suggest a good match between the approximated TLancaster

n and exact
TLancaster
n , with a very slight deviation in the tail part. By introducing the correlation structure,

the Satterthwaite approximation can significantly reduce the Type I error among correlated
p-values.

Self Contained vs. Competitive Lancaster Procedure
The main difference between competitive and self-contained tests lies in the formulation of the
null hypothesis [9]. Let μi stand for the effect size from the ith pathway. The null hypothesis for
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the self-contained test of the ith pathway is H0, self-contained: μi = 0. Thus, the correlated Lancaster
procedure can be considered as a self-contained test.

The null hypothesis in the competitive test is H0, competitive: μ1 = μ2 = � � � = μi = � � � The com-
petitive Lancaster test can be carried out using permutation testing:

Step 1: Let Pi be the p-value from the Lancaster procedure in the ith real pathway.

Step 2: Create L, say 100000, permutated pathways by shuffling genes among pathways. The
permutated pathway sizes should resemble the real pathway sizes. Let Pl be the p-value from
the Lancaster procedure in the lth permutated pathway for l = 1, 2,� � �, L.

Step 3: The p-value of the competitive Lancaster procedure is
XL

l¼1
IfPi � Plg=L for the ith

real pathway, where I{.} is an indicator function.

Meta-analysis in Sequencing Association Studies
Due to cost, the rarity of diseases involved, and high dimensionality of variants, sequencing
association studies are often underpowered to detect modest genetic effects. Meta-analysis can
be used to address this issue by analyzing data across studies. Meta-analysis uses study-specific
summary statistics, allowing investigators to combine information across studies when individ-
ual-level data cannot be shared.

The Lancaster procedure is independent from the SKAT test. One can directly apply the
Lancaster procedure to meta-analysis, as we demonstrated in our analysis of the Global Lipids
Genetics Consortium data. In this work, we choose SKAT to pair with the Lancaster procedure
in order to detect rare variants in exome sequencing data. For other types of sequencing data,
we suggest replacing SKAT with other statistical tests, such as FaST-LMM [10] or GEMMA
[11], at the gene level and then applying the Lancaster procedure to combine multiple effects at
the pathway level.

Lancaster Procedure Is Optimal in Bahadur Efficiency
Several weighted combined p-value methods have been developed. See [12] for a comprehen-
sive review. Since high throughput sequencing data pose a severe challenge in retaining the sta-
tistical power for small sample sizes in detection of sparse signals, it is critical to theoretically
assess the efficiency among the weighted combined p-value methods. Let Pi, (i = 1, 2,� � �,m) be
p-values fromm hypothesis tests. Littell and Folks [13, 14] showed that Fisher's method of

combining independent tests (TFisher ¼ �2
Xm
i¼1

lnðPiÞ) is asymptotically Bahadur efficient.

However, Fisher's method does not allow a weight function when combining p-values.
The weight function can be used to integrate multiple-source omics data from varying

sequencing platforms. For instance, one can apply weight functions to integrate microarray
data and CHIP-TIE data to identify the protein involved in transcription. In this case, weight
functions can be considered as prior information to ensure the binding calling is a real signal
instead of an artifact. As [15] pointed out, carefully chosen weights can generally improve
power for a combination of p-values.

There is no uniformly most powerful method of combining p-values. The Bahadur effi-
ciency is an important way to compare sample sizes required by two statistics in detection of
sparse signals (ε! 0).

The Notation of Bahadur Relative Efficiency. Consider a hypothesis test forH0: θ 2Θ0

vs.Ha: θ 2 Θ − Θ0. Bahadur efficiency offers an asymptotic relative comparison between two
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competing test statistics. Under Ha, a test statistic whose significance level converges to zero at
a faster rate is considered more Bahadur efficient.

Let Tn be a real valued test statistic depending on an independent sample, x1, x2,� � �, xn for
n = 1, 2, � � � Assume for all θ 2 Θ0, Tn follows the same null CDF F0. Let t be the value attained
by Tn, then the significance level of Tn is Pn = 1 − F0(t). Suppose that − 2ln Pn / n converges to
c(θ) with probability 1, i.e.,

Prð lim
n!1

�ð2=nÞlnPn ¼ cðyÞÞ ¼ 1

for some c(θ)> 0 under Ha: θ 2 Θ−Θ0. The value c(θ) is dependent on θ under the alternative
hypothesis and c(θ) is called the Bahadur efficiency slope of Tn when n!1. Consider two
competing sequences of test statistics, fTn

ð1Þg and fTn
ð2Þg, with the Bahadur efficiency slopes

c1(θ) and c2(θ), respectively. The ratio

�12ðyÞ ¼ c1ðyÞ=c2ðyÞ

is the Bahadur efficiency of fTn
ð1Þg relative to fTn

ð2Þg. Let N(i) be the minimal sample size satis-
fying PNðiÞ < ε for the ith test. Bahadur [16] shows that

lim
ε!0

N ð2Þ=Nð1Þ ¼ �12ðyÞ

with probability 1 under Ha: θ 2 Θ − Θ0, which indicates that the Bahadur efficiency ratio
ϕ12(θ) gives the limiting ratio of sample sizes required by the two statistics to attain an equally
small significance level. As a result, fTn

ð1Þg is deemed superior to, i.e. more Bahadur efficient
than, fTn

ð2Þg if ϕ12(θ)� 1 under Ha: θ 2 Θ − Θ0.
Bahadur Efficiency for Lancaster Procedure, Weighted Z-test, and Good's test. Con-

siderm sequences of test statistics, fT ðiÞ
ni
g; i ¼ 1; 2; � � � ; m and the corresponding significance

levels,fPðiÞ
ni
g, where ni is the sample size for the ith test statistic. Assume that for each

i = 1, 2,� � �,m, the sequence fT ðiÞ
ni
g has a Bahadur efficiency slope ci(θ). That is,

Pr lim
ni!1 � ð2=niÞlnPðiÞ

ni
¼ ciðyÞ

� �
¼ 1 for some ci(θ)> 0 under Ha: θ 2Θ − Θ0. Assume also

that the sample sizes n1, � � �, nm have an average sample size n = (n1 +� � �+nm) /m and

lim
n!1ni=n ¼ li for i = 1, 2,� � �,m. Then we have Pr lim

n!1 � ð2=nÞlnPðiÞ
ni
¼ liciðyÞ

� �
¼ 1. For each

n, it is desired to combine them statistics T ð1Þ
n1
; � � � ; T ðmÞ

nm
into an overall test statistic Tn for test-

ingH0: θ 2 Θ0 vs. Ha: θ 2 Θ − Θ0.
We first derive the Bahadur efficiency for the Lancaster test. Let fi, Fi and F�1

i be the PDF,
CDF, and inverse CDF for w2wi

, with wi > 0 for i = 1, 2,� � �,m.

[Theorem 1] Assumem independent test statistics T ð1Þ
n1
; � � � ; T ðmÞ

nm
have significance levels

Pð1Þ
n1
; � � � ; PðmÞ

nm
respectively. The Lancaster statistic,

Xm
i¼1

F�1
i ð1� PðiÞ

ni
Þ, has the Bahadur effi-

ciency slope cLancasterðyÞ ¼
Xm
i¼1

liciðyÞ under Ha: θ 2 Θ − Θ0.

[13] derived the Bahadur efficiency slope for the regular (unweighted) Z-test,Xm
i¼1

F�1ð1� PðiÞ
ni
Þ= ffiffiffiffi

m
p

. Here we generalize their findings to the weighted Z-test.
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[Theorem 2] Assumem independent test statistics T ð1Þ
n1
; � � � ; T ðmÞ

nm
have significance levels

Pð1Þ
n1
; � � � ; PðmÞ

nm
respectively. The weighted Z-test,

X
i
wiF

�1ð1� PðiÞ
ni
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
wi

q
, has the Baha-

dur efficiency slope cWeighted zðyÞ ¼
Xm
i¼1

wi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
liciðyÞ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
w2

i

q !2

under Ha: θ 2 Θ − Θ0.

When wi = 1 for all i = 1, 2,� � �,m, the weighted Z-test is reduced to the regular z statistic

and the Bahadur efficiency slope is cregular zðyÞ ¼
Xm
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
liciðyÞ

p
=
ffiffiffiffi
m

p
 !2

. This finding is in

agreement with the Bahadur efficiency finding for the regular Z-test in [13].
The Lancaster test statistic is superior to the weighted Z-test and regular Z-test in terms of

Bahadur efficiency. Using the induction method, we show that the Bahadur relative efficiency
ϕ12 = cLancaster (θ)/ cWeighted z (θ)� 1 and ϕ12 = cLancaster (θ)/ cregular z (θ)� 1 for all θ 2 Θ − Θ0.
The fact that lim

ε!0
N ð2Þ=N ð1Þ ¼ �12ðyÞ indicates that the Lancaster procedure will require smaller

sample sizes as compared to the weighted Z-test to achieve the same significance level.

[17] suggested a weighted Fisher’s method. Let Q ¼ P
m

i¼1
ðPðiÞ

ni
Þwi , so

�lnðQÞ ¼ �
Xm
i¼1

wilnðPðiÞ
ni
Þ. When the weights are unequal, the null CDF of Q is given by

PrðQ < qÞ ¼
Xm
i¼1

Liq
1=wi ; q 2 ½0; 1�, where Li ¼ ðwiÞm�1

=P
j6¼i
ðwi � wjÞ. Below we will derive the

Bahadur efficiency for Good’s test.
[Theorem 3] Assumem independent test statistics T ð1Þ

n1
; � � � ; T ðmÞ

nm
have significance levels

Pð1Þ
n1
; � � � ; PðmÞ

nm
respectively. Good’s test statistic,�lnðQÞ ¼ �

Xm
i¼1

wilnðPðiÞ
ni
Þ, has the Bahadur

efficiency slope cGoodðyÞ ¼
Xm
i¼1

wiliciðyÞ=maxiðwiÞ under Ha: θ 2 Θ − Θ0.

The maximal weight, maxiðwiÞ, has a strong impact on the Bahadur efficiency in Good’s
test. Only the individual test(s) assigned with the maximal weight reserves its Bahadur effi-
ciency in Good's test. That is, if wi ¼ maxiðwiÞ, then wiliciðyÞ=maxiðwiÞ ¼ maxiðwiÞliciðyÞ=
maxiðwiÞ ¼ liciðyÞ. Other individual tests will relatively lose more Bahadur efficiency as the
maximal weight gets larger. That is, if wi < maxiðwiÞ, then wiliciðyÞ=maxiðwiÞ < liciðyÞ.

The Lancaster procedure is superior to Good’s test in terms of the Bahadur efficiency, i.e.
ϕ12 = cLancaster (θ)/ cGood (θ)� 1 for all θ 2 Θ − Θ0 and limε!0

N ð2Þ=N ð1Þ ¼ �12ðyÞ. For large-scale
tests, which often occur in next-generation sequencing data, the Lancaster procedure will
require relatively smaller sample sizes as compared to Good’s test, i.e., NLancaster � NGood when
the significance level goes to 0, which represents sparse signaling in high throughput data.

Lancaster Procedure Has the Optimal Bahadur Efficiency. We can further prove that
the Lancaster procedure reaches the upper bounds of Bahadur efficiency among all non-
decreasing Tn. Thus the Lancaster procedure has the optimal Bahadur efficiency compared to
all other combination methods under mild conditions.

[Proposition 1] Let Tn be any function ofm independent test statistics T ð1Þ
n1
; � � � ; T ðmÞ

nm
. Let

cany (θ)> 0 be the Bahadur efficiency slope of Tn. Assume Tn is non-decreasing in a way that
t1 � t�1 ; � � � ; tm � t�m ) Tnðt1; � � � ; tmÞ � Tnðt�1 ; � � � ; t�mÞ. Then the Lancaster statistics have
the optimal Bahadur efficiency, with cLancaster (θ)� cany (θ) for all θ 2 Θ − Θ0.

The Lancaster procedure and Fisher’s test both have the optimal Bahadur efficiency among
all non-decreasing combined tests. Since the Lancaster procedure can incorporate weight
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functions for auxiliary information in modeling and testing, the Lancaster procedure has more
flexibility and it can be considered as the optimal generalized Fisher’s method. The non-
decreasing condition, t1 � t�1 ; � � � ; tm � t�m ) Tnðt1; � � � ; tmÞ � Tnðt�1 ; � � � ; t�mÞ, is easy to
meet in practice.

Comparing Bahadur Efficiency for Correlated Data. It is critical to assess Bahadur effi-
ciency for correlated data as it will shed light on the impact of correlation structures on the
asymptotic convergence rate of significance levels and will further impact the sample sizes
required for the experiments. This is a challenging topic since the distributions of combined
test statistics under complex correlation structures have no closed analytical forms. To address
this issue, we give an approximate Bahadur efficiency using the techniques described in the
Methods Section. Below are some interesting results.

[Proposition 2]Whenm statistics T ð1Þ
n1
; � � � ; T ðmÞ

nm
are correlated, under Ha: θ 2 Θ − Θ0:

• the Lancaster statistic, has an approximate Bahadur efficiency slope

cCorrelatedLancaster ðyÞ �
X

i
wiX

i
wi þ 2

X
i<j
rij

Xm
i¼1

liciðyÞ;

where

rij ¼ covðF�1
i ð1� PðiÞ

ni
Þ; F�1

j ð1� PðjÞ
nj
ÞÞ;

• the Good’s test statistic has an approximate Bahadur efficiency slope

cCorrelatedGood ðyÞ �
X

i
wiX

i
w2

i þ 2
X

i<j
~r ij

Xm
i¼1

wiliciðyÞ;

where

~r ij ¼ covðlnðPðiÞ
ni
Þ; lnðPðjÞ

nj
ÞÞ;

• the Fisher’s statistic has an approximate Bahadur efficiency slope

cCorrelatedFisher ðyÞ � m

mþ 2
X

i<j
~r ij

Xm
i¼1

liciðyÞ:

Simulation Study
We conducted an extensive simulation study to assess the type I error and power of the SKA-
T-Lancaster procedure. We further compared our proposed method to Gene Set Enrichment
Analysis (GSEA) [5]. The empirical assessment was based on rigorous simulation algorithms
for sequencing-based genome-wide association studies [18].

The simulation was conducted using the whole exome sequencing genotype data from the
1000 Genomes Project Phase 1 study (n = 822 individuals). After filtration, 40,918 biallellic
protein-changing coding variants in selected pathways were mapped to KEGG and Biocarta
pathways. To avoid testing over- or under- sized pathways, we selected pathways containing 10
to 100 genes. This yielded 353 pathways with 3304 genes for our simulation study.
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We applied a genome-wide additive model to evaluate pathway-testing methods using realis-
tic genetic architectures. Let Yi = Xiβ + εi, where Yi is a continuous trait, the vector Xi is the

whole exome sequencing genotype for the ith subject and εi 	i:i:d: Nð0; s2Þ is random noise. The
vector β contains genetic effect regression coefficients corresponding to genotype variants. In
simulation, the jth variant is causal if |βj|> 0; pathways and genes are causal if they harbor causal
variants. We adopted a stochastic hierarchical effect model βpgv = Cp × Cgdg × Cgvdgv × epgv to
distribute the total genetic variance into pathways, genes, and individual variants [18]. Within a
central causal pathway, we first randomly selected 50% of the genes to be associated with the
trait. Then we randomly selected 70% of the variants in causal genes to be associated with the
trait. We randomly assigned 80% (20%) of causal genes to be detrimental (protective). For vari-
ants within causal genes, 80% were detrimental and 20% were protective. We set the whole-
genome heritability h2 = Var(Xβ)/(Var(Xβ) + σ2) = 20%. This resembles heritability in real data,
which often ranges between 20% and 30%. We used Bonferroni correction to control Family-
Wise Error Rate (FWER) and set the genome-wide significance level at α = 0.05/
353 = 1.4164E-4 for testing 353 pathways. We performed principal component analysis and
included the top 3 principal components as covariates in regression analyses to adjust for the
population stratification.

In the SKAT-Lancaster procedure, we first performed SKAT to test overall effects on the
gene level. Then we considered 4 weight functions in the Lancaster procedure when combining
p-values among genes in a pathway:

• Gene size weight ¼ 2
ffiffiffiffiffiffiffiffiffi
~n=ni

p
, where ni is the number of SNPs in the ith gene and ~n ¼

medianðniÞ is the median gene size. This weight can remove bias when testing overly small or
overly generalized pathways.

• AIC weight, BIC weight: these weight functions calculate the degrees of variations summa-
rized by the gene level multi-SNP regression.

• Uniform weight = 2.

We considered 3 simulation scenarios (Table 1). In Scenario 1, we assessed the global null

hypothesis type I error by setting all genetic effect coefficients as zero, i.e. b ¼~0. Any pathways
or genes reaching the significance level were considered as false positives. The results in Table 2
indicate that the SKAT-Lancaster procedure has well-controlled type I error rates (~10E-4).
We further investigated the Q-Q plot by comparing observed p-values versus expected p-values
(Fig 1). The type I error inflation factor (λ) is the ratio between the area under the curve and
the area under the diagonal reference line. Fig 1 indicates that SKAT-Lancaster procedure with
4 weight functions has no inflation of the global null hypothesis type I error rate (λ< 1).

In Scenarios 2 and 3, we assessed the stringent power and lenient power when randomly
generating one central causal pathway in each simulation (Table 1). The stringent power calcu-
lates the percentage of times the central causal pathway is found significant. Due to the correla-
tion among pathways, pathways that share causal genes with the central causal pathway are
overlapping causal pathways. The lenient power calculates the percentage of times (central and
overlapping) causal pathways are found significant.

The results in Table 2 indicate that the SKAT-Lancaster procedure outperformed GSEA. In
Scenario 2, the SKAT-Lancaster procedure with 4 weight functions had lenient power ranging
between 0.826 and 0.884, while GSEA had lenient power of 0.373. In Scenario 3, the SKAT-Lan-
caster procedure with 4 weight functions had lenient power ranging between 0.543 and 0.645,
while GSEA had lenient power of 0.505. We randomly assign the causal variances in Scenarios 2
and 3, the SKAT-Lancaster procedure with uniform weight had the best detection power.
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Regarding the computing time, the self-contained Lancaster procedure compares a test sta-
tistic to an asymptotic distribution, thus it does not require intensive computation. The com-
petitive Lancaster procedure is based on permutation and it has similar computation efficiency
as compared with GSEA.

Case Study: Lipid Meta-Analysis
We illustrate our method using meta-analysis data generated by the Global Lipids Genetics
Consortium. To identify new loci and validate existing loci associated with lipids, [19] we ana-
lyzed the levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL)
cholesterol, triglycerides (TG) and total cholesterol (TC) of 196,475 individuals from 60 stud-
ies. A total of 1,048,161 Single Nucleotide Polymorphisms (SNPs) were genotyped using the
genome-wide association study (GWAS) arrays and Metabochip arrays. These variants were
selected from promising loci associated with lipid and coronary artery disease, based on find-
ings from previous GWAS studies and the 1000 Genome Project. Subjects taking lipid-lowering

Table 1. Simulation Scenarios and parameters*.

Simulation Scenarios 1

• Include 353 pathways, 3304 genes.

• Phenotype is normally distributed.

• Assume heritability is 20%.

• b ¼~0.

• No pathways, genes or variations are associated with the trait.

• Significance level is 0.05/353. All significant results are considered as type 1 errors.

Simulation Scenario 2

• Include 353 pathways and 3304 genes.

• Phenotype is normally distributed.

• Randomly assign one central causal pathway. Within the central causal pathway, randomly assign 50%
causal genes. Randomly assign 70% causal variants in associated genes.

• Randomly assigned 80% (20%) of causal genes to be detrimental (protective). For variants within the
causal genes, 80% are detrimental and 20% are protective.

• Associated variants' effect size ~ log10(MAF).

• Significance level is 0.05/353.

Simulation Scenarios 3

• Include 353 pathways and 3304 genes.

• Phenotype is normally distributed.

• Assume heritability is 20%.

• Randomly assign one central causal pathway. Within the central causal pathway, randomly assign 50%
causal genes. Randomly assign 70% causal variants in associated genes.

• Randomly assigned 80% (20%) of causal genes to be detrimental (protective). For variants within the
causal genes, 80% are detrimental and 20% are protective.

• Associated variants' effect size ~1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAF � ð1�MAFÞp

.

• Significance level is 0.05/353.

* Covariates: top 3 principal components for population stratification are included as covariates in all three

simulation scenarios.

doi:10.1371/journal.pone.0152667.t001
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medications were excluded in the meta-analysis. The additive effect of each SNP on blood lipid
levels after adjusting for age and sex was analyzed and p-value was generated for each SNP and
each lipid variable. Genomic control values for the initial meta-analyses were 1.10–1.15, indi-
cating that population stratification had only a minor impact on the results [20].

The SKAT-Lancaster procedure can only be applied to original data. Remarkably, as the
Lancaster procedure is independent from the SKAT test, it can be applied to secondary data
analysis. To identify pathways that are more significant than others, we performed the compet-
itive Lancaster procedure. In the competitive test, we performed 100,000 times of permutations
and ensured that the permutated pathways preserved the size and characteristics of original
pathways. Our simulation study showed that the competitive Lancaster procedure had well-
controlled type I error rates to prevent false discoveries.

Before comparing the proposed method to Fisher’s method [21] and weighted Z-test [22],
we considered 4 weight functions for the Lancaster procedure:

• w1 ¼ 2
ffiffiffiffiffiffiffiffiffi
~n=ni

p
, where ni is the number of SNPs in the ith gene and ~n ¼ medianðniÞ is the

median gene size. This is a weight adjusted by gene size to remove the bias from large genes.

• w2 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAFð1�MAFÞp

, where MAF stands for minor allele frequency. Common variants
receive higher weights.

• w3 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAFð1�MAFÞp

. Rare variants receive higher weights.

• Uniform weight: w4 = 2.

Pathway analysis was performed using the gene ontology (GO) gene sets from http://www.
broadinstitute.org/gsea/index.jsp. A total of 1454 pathways were analyzed and multiple testing

Table 2. Comparison of type I error and power among competingmethods.

Simulation Scenario 1

Type_1 error Inflation factor

Test Weight function (10E-4) λ

SKAT- Lancaster Uniform 1.1615 0.9921

SKAT- Lancaster Gene size 1.3598 0.9852

SKAT- Lancaster AIC 0.9632 0.9477

SKAT- Lancaster BIC 1.1331 0.9770

GSEA 12.0000 1.2390

Simulation Scenario 2

Test Weight function Stringent Power Lenient Power

SKAT- Lancaster Uniform 0.870 0.884

SKAT- Lancaster Gene size 0.810 0.836

SKAT- Lancaster AIC 0.832 0.854

SKAT- Lancaster BIC 0.809 0.826

GSEA 0.279 0.373

Simulation Scenario 3

Test Weight function Stringent Power Lenient Power

SKAT- Lancaster Uniform 0.610 0.645

SKAT- Lancaster Gene size 0.509 0.543

SKAT- Lancaster AIC 0.585 0.628

SKAT- Lancaster BIC 0.540 0.558

GSEA 0.468 0.505

doi:10.1371/journal.pone.0152667.t002
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was adjusted by False Discovery Rate (FDR) [23]. The numbers of significant pathways are
summarized in Fig 2 As shown in Table 3, the Lancaster procedure outperformed Fisher's
method and weighted Z-test by identifying more significant pathways. When the Lancaster
procedure was assigned with uniform weights (w4), it performed equivalently to Fisher's
method. The weighted Z-test is not optimal in Bahadur efficiency, so it identified fewer

Fig 1. Q-Q plots investigating global null hypothesis type-I errors for the SKAT-Lancaster procedure under Simulation Scenario 1 (λ is
the inflation factor for the Type I error rate). The type I error inflation factor (λ) is the ratio between the area under the curve and the area under
the diagonal reference line.

doi:10.1371/journal.pone.0152667.g001
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pathways than the Lancaster procedure and Fisher's method. Weight functions w1 and w2 out-
performed w3 and w4, indicating that removing gene size bias and assigning higher weights to
common variants can improve power of the Lancaster procedure.

We compared our pathway findings with findings from the MAGENTA analysis in [19]
(Table 4). The Lancaster procedure (w1) showed that the "enzyme binding" pathway is signifi-
cantly associated with HDL (FDR<10−5), which agrees with the finding from [19]
(FDR = 0.038). The "enzyme binding" pathway contained 178 genes interacting selectively and
non-covalently with any enzyme. The Lancaster procedure (w1, w2, w4) showed that the "lipid

Fig 2. Venn Diagrams for Significant Pathways (FDR < 0.05).

doi:10.1371/journal.pone.0152667.g002

Table 3. Number of Significant pathways.

FDR < 0.05 HDL LDL TC TG

Lancaster (w1) 117 79 150 93

Lancaster (w2) 91 55 129 72

Lancaster (w3) 0 0 0 0

Lancaster (w4) 77 44 115 60

Fisher 77 44 115 60

Weighted Z-test (w1) 2 1 3 2

Weighted Z-test (w2) 5 0 5 4

Weighted Z-test (w3) 0 0 0 0

Weighted Z-test (w4) 4 0 4 6

doi:10.1371/journal.pone.0152667.t003
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transport" pathway is significantly associated with LDL (FDR adjusted p-value<10−5), which
agrees with the finding from [19] (FDR = 0.0016). The "lipid transport" pathway contains 28
genes involving directed movement of lipids into, out of, within, or between cells. Lipids are
compounds soluble in an organic solvent but not, or sparingly, in an aqueous solvent. The Lan-
caster procedure (w1, w2, w4)found that the "lipoprotein metabolic process" pathway is signifi-
cantly associated with LDL (FDR adjusted p-value<10−5), which agrees with the finding from
[19] (FDR = 0.00017). The "lipoprotein metabolic process" pathway contains 33 genes involv-
ing the chemical reactions. The pathway also involves any conjugated, water-soluble protein in
which the non-protein moiety consists of a lipid or lipids.

Discussion and Conclusions
The proposed two-stage approach is a powerful tool to integrate information in pathway analy-
sis of sequencing association studies. The first stage is the gene-based testing, where effects
from rare variants within a gene are summarized into one p-value using the SKAT test. In the
second stage, p-values from multiple genes are combined for pathway analysis and meta-analy-
sis using the correlated Lancaster procedure. In this work, we prove that the Lancaster proce-
dure is optimal in Bahadur efficiency among all combined p-value methods.

We assess the Bahadur efficiency among weighted combined p-value methods and further
prove that the Lancaster procedure is optimal in Bahadur efficiency under very mild condi-
tions. There has been a lack of theatrical comparison among combined p-value methods. Sev-
eral simulation studies have compared weighted combined p-value methods [15, 22, 24]. With
more than 400 citations in the literature, these studies have been a subject of intense interest to
the research community heated discussions in the research community, but yield controversial
results in different simulation scenarios. Thus, we fill the gap by comparing the Bahadur effi-
ciency among methods.

Table 4. Comparison of pathway analysis p-values.

Pathway Name enzyme binding lipid transport lipoprotein metabolic process

GO Accession GO:0019899 GO:0006869 GO:0042157

Gene Ontology molecular function biological process biological process

Description Interacting
selectively with any
enzyme

The directed movement of lipids into, out of, within or
between cells. Lipids are compounds soluble in an
organic solvent but not, or sparingly, in an aqueous
solvent.

The chemical reactions and pathways involving any
conjugated, water-soluble protein in which the
nonprotein moiety consists of a lipid or lipids.

number of genes 178 28 33

number of SNPs 12089 1058 769

(Willer 2013)* 0.038 0.0016 0.00017

Lancaster (w1)* <10−5 <10−5 <10−5

Lancaster (w2) * 0.80 <10−5 <10−5

Lancaster (w3)* 0.98 0.44 0.44

Lancaster (w4)* 0.82 <10−5 <10−5

Fisher* 0.82 <10−5 <10−5

Weighted z (w1)* 0.90 0.36 0.58

Weighted z (w2)* 0.94 0.21 0.35

Weighted z (w3)* 0.99 0.65 0.55

Weighted z (w4)* 0.94 0.23 0.36

* FDR adjusted p-values

doi:10.1371/journal.pone.0152667.t004
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The Bahadur efficiency is a critical measure of performance of statistical testing [25] [26]. In
[25], Bahadur efficiency has been applied for sensitivity analyses in observation studies. The
Bahadur efficiency, lim

ε!0
N ð2Þ=Nð1Þ ¼ �12ðyÞ, compares sample sizes among different statistical

tests when signals become sparse in sequencing data, i.e. ε! 0. As the number of genetic vari-
ants scanned by the sequencing technology increases from thousands to millions, signals that
are associated with phenotypes become sparse, requiring a more stringent statistical significance
level to detect sparse signals, i.e. (PNðiÞ < ε ! 0). The optimal Bahadur efficiency ensures that
the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals.

Among combined p-value methods, the Lancaster procedure can be considered as the gen-
eralized Fisher's method with a weight function. Weight functions, when used appropriately,
can generally increase the power of combined p-value methods [27–29].

Evaluating Bahadur efficiency for high-throughput genetic data is critical since there is no
combined p-value method that that is uniformly the most powerful. Bahadur efficiency calcu-
lates the limiting ratio of sample sizes required by two statistics to attain an equally small signif-
icance level. The optimal Bahadur efficiency indicates that the Lancaster procedure
asymptotically requires a minimal sample size to attain the significance level.

Data and Software
R package ‘CombinePValue’ has been created for the proposed Lancaster procedure. Case
study data are available from http://csg.sph.umich.edu//abecasis/public/lipids2013/. Source
codes for simulation analyses can be provided upon contacting Dr GuodongWu.

Appendix
Lemma 1 [16, 30] is needed to derive the Bahadur efficiency.

[Lemma 1] If the following two conditions are met,

(Condition 1) there exists a function b(θ), 0< b(θ)<1, such that Tn=
ffiffiffi
n

p ! bðyÞ with proba-
bility 1 under Ha: θ 2 Θ − Θ0;

(Condition 2) there exists a function f(t), 0< f(t)<1, which is continuous in some open set
containing the range of b(θ) such that for each t in the open set

�n�1ln½1� F0ð
ffiffiffi
n

p
tÞ� ! f ðtÞ, then the Bahadur efficiency slope of {Tn} is c(θ) = 2f (b(θ)).

Proof of Theorem 1: Since the equivalent tests have the same Bahadur efficiency, we can

consider TLancaster
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ZðiÞ
ni

s
, where ZðiÞ

ni
¼ F�1

i ð1� PðiÞ
ni
Þ. Under Ha: θ 2Θ0, PðiÞ

ni
	

Uniformð0; 1Þ and ZðiÞ
ni
	 w2

wi
. According to Theorem 2.1 by [31], we have�2lnPðiÞ

ni
¼

�2lnð1� FiðZðiÞ
ni
ÞÞ ¼ �2lnðfiðZðiÞ

ni
ÞÞ þ oð1Þ ¼ ZðiÞ

ni
ð1þ oð1ÞÞ as ZðiÞ

ni
! 1. So n�1ZðiÞ

ni
ð1þ

oð1ÞÞ ¼ �ð2=nÞlogPðiÞ
ni
! liciðyÞ with probability 1 under Ha: θ 2 Θ − Θ0. It follows that

TLancaster
n =

ffiffiffi
n

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
ZðiÞ
ni
=n

q
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
liciðyÞ

q
: ð1Þ

Now, for θ 2Θ0, TLancaster
n is distributed as the square root of w2X

i
wi

with the CDF F and

PDF f. According to Theorem 2.1 by [31], we have,

�n�1ln 1� Fð ffiffiffi
n

p
tÞ� � ¼ �n�1ln f ð ffiffiffi

n
p

tÞ� � ¼ 0:5t2ð1þ oð1ÞÞ ! 0:5t2: ð2Þ
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Plug the results from Eqs (1) and (2) to Lemma 1. Then the Bahahur efficiency slope for the

Lancaster statistic is cLancasterðyÞ ¼
Xm
i¼1

liciðyÞ under Ha: θ 2Θ − Θ0.

Proof of Theorem 2: Rewrite the weighted z statistic as

TWeighted z
n ¼

Xm
i¼1

ðwiZ
ðiÞ
ni
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
w2

i

q
, where ZðiÞ

ni
¼ F�1ð1� PðiÞ

ni
Þ. Under H0: θ 2 Θ0, PðiÞ

ni
	

Uniformð0; 1Þ and ZðiÞ
ni
	 Nð0; 1Þ. According to Theorem 2.1 by [31], we have�2lnPðiÞ

ni
¼

�2lnð1� FðZðiÞ
ni
ÞÞ ¼ �2lnðf ðZðiÞ

ni
ÞÞ þ oð1Þ ¼ ½ZðiÞ

ni
�2ð1þ oð1ÞÞ as ZðiÞ

ni
! 1. So n�1½ZðiÞ

ni
�2ð1þ

oð1ÞÞ ¼ �2n�1logPðiÞ
ni
! liciðyÞ with probability 1 under Ha: θ 2 Θ − Θ0. It follows that

TWeighted z
n =

ffiffiffi
n

p ¼
Xm
i¼1

ðwiZ
ðiÞ
ni
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Xm

i¼1
w2

i

q
!
Xm
i¼1

wi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
liciðyÞ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
w2

i

q
: ð3Þ

Now, for θ 2Θ0, TWeighted z
n 	 Nð0; 1Þ. Thus,

�n�1ln½1� Fð ffiffiffi
n

p
tÞ� ¼ 0:5t2ð1þ oð1ÞÞ ! 0:5t2: ð4Þ

Eqs (3) and (4) and Lemma 1 imply that the Bahadur efficiency slope of fTWeighted z
n g is

cWeighted zðyÞ ¼
Xm
i¼1

wi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
liciðyÞ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
w2

i

q !2

:

Proof of Theorem 3: It is equivalent to consider TGood
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Xm
i¼1

wi lnðPðiÞ
ni
Þ

s
. Then

TGood
n =

ffiffiffi
n

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�1

Xm
i¼1

wi lnðPðiÞ
ni
Þ

s
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5
Xm
i¼1

wiliciðyÞ
s

with probability 1 under Ha: θ 2 Θ − Θ0. Direction calculation shows that the PDF offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðQÞp
is f ðxÞ ¼ 2x

Xm
i¼1

Li

wi

expð�x2=wiÞ underH0. Let I be the index corresponds to

max
i ðwiÞ ¼ wI

. One can construct the upper and lower bounds of f(x),

2x
LI

wI

expð�x2=wIÞ � f ðxÞ � 2xm
LI

wI

expð�x2=wIÞ

when x is greater than a certain finite number. This implies that

�n�1ln½1� Fð ffiffiffi
n

p
tÞ� ¼ �n�1lnf ð ffiffiffi

n
p

tÞ þ oð1Þ ! t2=maxðwiÞ:

By Lemma 1, the Bahadur efficiency slope for Good’s test is cGoodðyÞ ¼
Xm
i¼1

wiliciðyÞ=maxiðwiÞ for θ 2 Θ − Θ0.

Proof of Proposition 1: Let Pn be the significance level of Tn and let t
(1), � � �, t(m) be the

observed values of T ð1Þ
n1
; � � � ; T ðmÞ

nm
. For any non-decreasing Tn, we have

Pn � PrðT ð1Þ
n1

> tð1Þ; � � � ; T ðmÞ
nm

> tðmÞÞ � P
m

i¼1
PrðT ðiÞ

ni
> tðiÞÞ:
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Therefore, cLancasterðyÞ ¼
Xm
i¼1

liciðyÞ ¼ �n�1
Xm
i¼1

lnðPrðT ðiÞ
ni

> tðiÞÞÞ � �n�1lnðPnÞ ¼ canyðyÞ

for all θ 2Θ − Θ0.
Proof of Proposition 2:We give the proof to the Lancaster statistic. Note that any correla-

tion structure among p-values has no impact to the first condition of Lemma 1. As a result, one
can repeat the derivation for Theorem 1 to get

TLancaster
n =

ffiffiffi
n

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
ZðiÞ
ni
=n

q
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
liciðyÞ

q
ð5Þ

under Ha: θ 2 Θ − Θ0.

When Pð1Þ
n1
; � � � ; PðmÞ

nm
are correlated, the null distribution of TLancaster

n ¼
Xm
i¼1

F�1
i ð1� PðiÞ

ni
Þ no

longer follows w2X
i
wi

distribution. One can approximate it by a scaled chi-square distribution

such as TLancaster
n � cw2

v . By matching expectation and variance between two sides, one can solve
for c and v. Under H0: θ 2 Θ0, direct calculations show that

�n�1ln½1� Fð ffiffiffi
n

p
tÞ� � �n�1ln½1� ~Fð ffiffiffi

n
p

tÞ� ¼ �n�1ln½~f ð ffiffiffi
n

p
tÞ� ¼

0:5t2
X

i
wiX

i
wi þ 2

X
i<j
rij

ð1þ oð1ÞÞð6Þ

where F is the CDF of TCorrelated
Lancaster and ~F (~f ) are the CDF (PDF) of c�1w2v .

Plug the results from Eqs (5) and (6) to Lemma 1. Then the Bahahur efficiency slope for the

Lancaster statistic is cCorrelatedLancaster ðyÞ �
X

i
wiX

i
wiþ2

X
i<j
rij

Xm
i¼1

liciðyÞ under Ha: θ 2 Θ − Θ0.
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